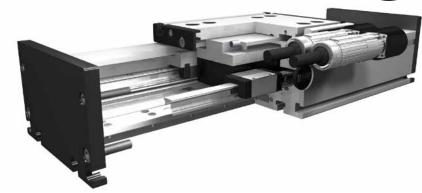
Linear system **DSM 120, 160, 200**

LINEAR MOTOR DRIVE


RAIL GUIDE

HIGH DYNAMICS

←■→ HIGH REPEAT ACCURACY

■→ LONG TRAVERSE PATH

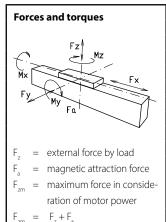
INDEPENDENT CARRIAGES

Function:

This unit consists of a rectangular aluminium profile with 2 integrated rail guidance. The linear motor DSM unit is based on the principle of a linear, synchronous AC motor. The guiding profile is fitted with permanent magnets as stator (secondary part). The carriage is fitted with the actuator (primary part). The magnetic attraction causes a force between carriage and guiding profile also in the absence of current. This force can be used for the initial tension of the bearings. Several carriages (primary parts) can be driven independently on one guiding profile.

Fitting position: As required. Max. length 6.000 mm without joints.

By T-slots.

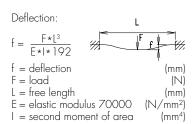

Carriage mounting:

Unit mounting: By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.

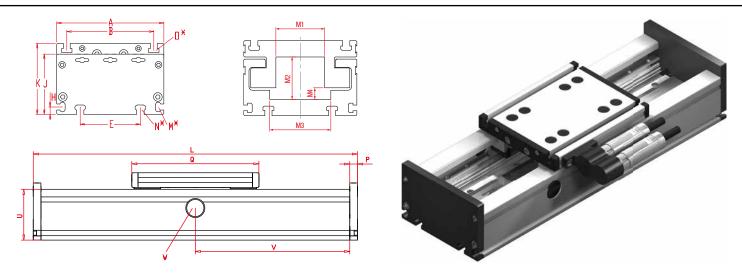
In the standard version, the carriage runs on 4 runner blocks which can be serviced at a central servicing position. **Carriage support:**

For longer carriages the number of runner blocks can be increased.

Repeatability \pm 0,05mm mm. Repeated accuracy max. \pm 0,05mm bis 4.000 mm, \pm 0,1 >4.000 mm.


Size	12		160		200					
Motor size 1		2	1	2	3	1	2	3		
permitted dyn.Forces*	1000		10000 km		10000 km					
F _a (N)	600	1200	1200	1800	5500	3600	5500	11000		
F _{zm} (N)	820	1640	1590	2800	7030	4990	7640	13860		
F _z (N)	650	500	1775	1775	3550	4092	4092	8184		
M _x (Nm)	35	32	160	128	153	357	231	462		
M _v (Nm)	40	58	373	351	532	769	556	1540		
M _z (Nm)	40	57	222	261	328	585	654	906		
Number of runner blocks	6	8	4	4	8	4	4	8		
All forces and torques related to the following:										

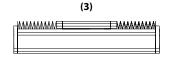
existing values Fzm_{dyn} $\mathrm{My}_{\mathrm{dyn}}$ table values Fy_{dyn} Mx_{dyn}


Motor specifications Fx					,				
Motor size	1	2	1	2	3	1	2	3	
Carriage weight (kg)	1,4	2,7	4,8	5,3	7,1	10,9	11,4	16,9	
Weight primary part (kg)	0,7	1,4	1,4	3,7	5,2	4,5	6,4	8,4	
permanent (N)	61	115	115	271	406	383	574	766	
Max. (N) 1s	Max. (N) 1s 162		323	607	911	868	1301	1735	
Moving force without curren	t								
N 15		15	30	30	60	40	40	80	
Geometrical moments of inc	ertia of aluminiu	m profile							
l _x mm⁴	5,60		2,13 x10 ⁶		4,81 x10 ⁶				
l _v mm⁴	34,19	x10 ⁵		12,3 x10 ⁶			26,0 x10 ⁶		
Elastic modulus N/mm²	700	000		70000			70000		

For life-time calculation use our homepage.

* referred to life-time

Linear system **DSM 120, 160, 200**


V = Q + 100 mmW = servicing position

Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	А	В	E	н	J	К	M for	N for	O for	Р	U	Basic weight Motor size 1/2/3	Weight per 100 mm Motor size 1/2/3
DSM 120	Q + 30	120	96	78	10	68	79	M 5	M 6	M 6	10	60	4,8/6,9 kg	1,0/1,0
DSM 160	Q + 30	160	130	90	11	90	106	M 6	M 8	M 8	12	80	12,4/16,7/22,6 kg	1,7/2,0/2,0 kg
DSM 200	Q + 35	200	160	140	15	110	129	M 8	M 10	M 10	15	100	30,0 /33,0 /44,2kg	3,1/3,1/3,1 kg

Choice of guide body profile: Stainless versions upon request.

 Size
 M1
 M2
 M3
 M4

 DS 120
 52
 45
 64
 13

 DS 160
 70
 60
 85
 17

 DS 200
 84
 77
 100
 15

Helper table for provided motors

without internal profile and cover bands

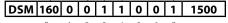
with bellows

Measurement system:

Plug:

- (1) Measurement system LE100 5V Resolution 0.05
- (2) Measurement system LE100 10,5-30V Resolution 0.05
- (3) Hall sensor
- **(4)** Measurement system provided by customer

- (1) Motor size 1 with Q₁
- (2) Motor size 2 with Q,
- (4) Supply with Q₁*
- (5) Supply with Q,*
- (3) Motor size 3 with Q₃
- (6) Supply with Q₃*
- * = provided by customer


Dimensioning criteria for motor output										
	ا ا	b _p □	h _{ps} 🗆	Q ₁	Q ₂	Q ₃				
120	Q-70	55	38	196	276	-				
160	Q-70	71	50	316	360	461				
200	Q-70	85	62	410	444	610				

 $I_p = length primary part; b_p = width primary part;$

h_{ps} = height primary part + height secondary part + interspaces primary-/secondary part

For standard carriage length see 'Q' in table.

The carriages can be delivered in any non-standard length upon request; the longer the carriage, the greater the load capacity. For linear encoder refer to chapter 9.1.

Basic length + stroke = total length

Sample ordering code:

DSM160, Bahr Modultechnik Linear motor, standard body profile, Measurement system LE100 5V, Plug Pos. 1, motor size 1, 1154 mm stroke

