Linear system **DLZS 120, 160, 200**

BELT DRIVE

- OMEGA SYSTEM
- $igoplus_{ ext{P}}$ vertical installation position
- 🖉 LIFTING SYSTEM

Function:

This unit consists of a rectangular aluminium profile with 2 integrated roller guides. The carriage is moved by a belt drive. An innovation is that the toothed belt is diverted within a drive block positioned centrically. The result is an enormous compactness with regard to the overall system length. The toothed drive pulley has a coupling claw in the standard version. Belt tension can be readjusted by a simple screw adjustment device in the carriage. This device can also be used for symmetrical adjustment of two or more linear units running parallel. The openings of the guide body are sealed with 3 stainless steel cover bands to protect the guide from splash water and dust. Use: compact and space-saving system with variable position of the drive block.

Fitting position: Carriage mounting: Unit mounting: Belt type: Carriage support: As required. Max. length 6.000 mm without joints.

By T-slots.

By T-slots and mounting sets. The linear axis can be combined with any T-slot profile. HTD with steel reinforcement, no backlash when changing direction, repeatability ± 0,1 mm.

In the standard version, the carriage runs on 8 rollers which can be adjusted and serviced at a central servicing position. For longer carriages the number of rollers can be increased.

Forces and torques	Size	1:	20	1	60	200							
l'orces una torques	Forces/Torques	static	dynamic	static	dynamic.	static	dynamic.						
Fz≜	F _x (N)	894	800	1900	1800	4000	3800						
Mz	F _v (N)	1100	900	3000	2000	4400	3100						
	F _z (N)	1250	1000	3500	2800	4900	4400						
Mx Fx	M _x (Nm)	150	125	400	320	600	510						
	M _v (Nm)	140	120	360	300	560	480						
F Y My	M _z (Nm)	100	90	180	150	310	275						
	All forces and torques related to the following:												
	existing values Fy	Fz M	x My	Mz	~1								
7													
	No-load torque												
	Nm without cover bands	1	,2	1	,5	1,8							
	Nm with cover bands	1	,6	2	.,1	4							
	Speed												
	(m/s) max		4		б	8							
	Tensile force												
	permanent (N)	9	00	19	900	4000							
	0,2 s (N)	10	000	20)90	4300							
	Geometrical moments of inertia of aluminium profile												
	l _x mm⁴	6,6:	x10 ⁵	22,2	2x10 ⁵	63,8x10 ⁵							
	l _v mm ⁴	38,6	5x10 ⁵	122,	0x10 ⁵	335x10 ⁵							
	Elastic modulus N/mm ²	70	000	70	000	70000							

For life-time calculation of rollers use our homepage.

140

 $V=Q+100 \mbox{ mm} \qquad W= servicing \mbox{ position}$ Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	в	с	D -0,05	E	F	G	н	I	ſ	к	M for	N for	O for	Р	Q	R	т	U	х	Y	Basic weight	Weight per 100 mm
DLZS 120	210	120	96	80	47	78	42	84,5	10	18,7	68	163	M5	M6	M6	10	156	40	M6	60	130	30	6,1 kg	0,85 kg
DLZS 160	300	160	130	100	66	90	60	107	11	39	90	213	M6	M8	M8	12	200	60	M8	80	180	38	14,9 kg	1,5 kg
DLZS 200	380	200	160	130	90	140	80	146	15	48,5	110	275	M8	M10	M10	15	270	55	M10	100	270	60	30,8 kg	2,1 kg

Sample ordering code:

DLZS160 with internal profile and cover bands, standard carriage, coupling claw on one side, 1200 mm stroke.

