

BELT DRIVE

(KG) HIGHER PROFILE STABILITY

- HIGHER FORCE FIXTURE
- 🔍 LONG TRAVERSE PATH

Function:

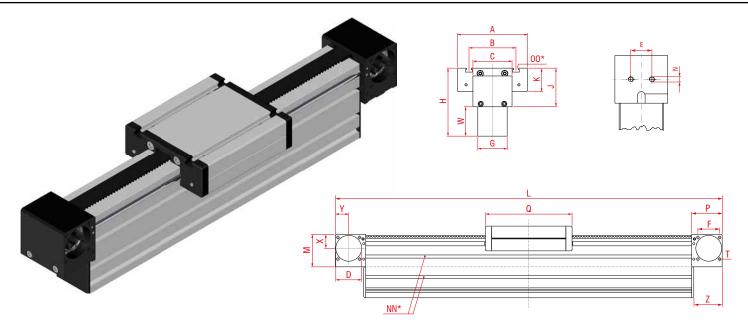
The guide body consists of an aluminium square profile with lateral, parallel, form-fit, internal hardened steel rods. The guide carriage, which is driven along the shafts by a timing belt, moves on the guide body with internal linear ball bearings that are adjustable free of play. Due to the rectangular profile high torques and loads can be taken up. In addition, a very high stability and low deflection are ensured for long axis systems. The belt tension can be easily readjusted via a tensioning device within the carriage. This device also helps to adjust the symmetry of the carriages in applications where two parallel linear units are used.

Fitting position: Carriage mounting: Unit mounting: Belt type:

As required. Max. length 3.000 mm without joints.

By T-slots.

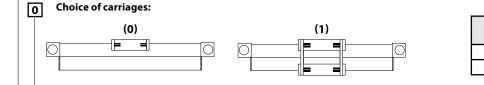
By T-slots or tapped holes in the bearing block, mounting sets. HTD with steel reinforcement, no backlash when changing direction, repeatability: \pm 0,1 mm.


Forces and torques	Size		60	6	50 S	
l'orces una corques	Forces/Torques	static	dynamic	static	dynamic	
Fz∱	F _x (N)	894	800	894	800	
√ Mz	F _v (N)	3000	2000	4100	3100	
	F _z (N)	1700	1100	2160	1600	
INA F	× M _x (Nm)	67	43	88	65	
Fy	M _v (Nm)	90	70	190	140	
r y My	M _z (Nm)	120	100	230	170	
	All forces and torques relate to the follo	wing:				
	existing values Fy Fz	. Mx . My	Mz			
	table values Fy_{dyn} Fz_{dyn}	+ $\frac{Mx}{Mx_{dyn}}$ + $\frac{My}{My_{dyn}}$ -	+ <u> </u>			
	No-load torque					
	Nm		0,6		0,7	
	Speed					
	(m/s) max		5		7	
	Tensile force					
	permanent (N)		900	Ģ	900	
	0,2 s (N)	1	000	1000		
	Geometrical moments of inertia of alun	ninium profile				
	l _x mm⁴	2,8	3 x 10 ⁶	2,8 x 10 ⁶		
	l _v mm⁴	9,6	5 x 10 ⁵	9,6 x 10⁵		
	E-Modulus N/mm ²	70	0000	70	0000	

For life-time calculation of rollers use our homepage.

Driving torque: Deflection: F*P*S F*13 F +M = force (N)f = $\overline{2000*\pi}$ E*I*192 Ρ = pulley action perimeter (mm) Si f = deflection= safety factor 1,2 ... 2 (mm) M_*n $M_n = no-load torque$ (Nm) F = load(N) 9550 n = rpm pulley (min⁻¹) L = free length(mm) $M_a = driving torque$ (Nm) E = elastic modulus 70000 (N/mm^2) I = second moment of area P (KW) = motor power (mm⁴)

Linear system ELZ 60 (S) W


Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	В	с	D - 0,05	E	F	G	H	ſ	к	м	N	NN for	00 for	Ρ	Q	т	w	x	Y	z	Basic weight	Weight per 100 mm
ELZ 60 W	290	144	96	80	47	30	42	60	139	79	48	71	M8	M5	M8	59	168	M6	60	27	26	55	5,4 kg	0,8 kg
ELZ 60S W	315	170	108	80	47	30	42	60	143	83	52	71	M8	M5	M8	59	194	M6	60	27	26	55	6,4 kg	0,8 kg

Choice of guide body profile: 0

(0) Standard (2) corrosion-protected guide rods and screws

(4) expanded corrosion-protected version (depending on the availability of components)

Size	Version 1							
5120	Q	L						
60	184	306						
60 S	214	335						

Version 9 is the same as 0,

but with double sided coupling claw.

Belt table:

Drive version:

1

2 3 4

> Ш Ш

0

0

Code No.		Size	Belt	mm/rev.	Number of teeth		
0	4 60 (S)		5M25	130	26		

5

Ш

Щ

6 7 8 9

Щ

Shaft dimensions /	Coupling claw:
--------------------	----------------

Size	Shaft ø h6 x length	Key	Coupling			
60 (S)	14 x 35	5x5x28	14			

ELZ 60 W 1 0 0 0 4 1 1500 Pos. 1 2 3 4 5 б 7

Basic length + stroke = total length

Sample ordering code:

ELZ 60 W, standard body profile, standard carriage, coupling claw on one side, 1210 mm stroke

Щ

Щ