

SURFACE PORTAL - STRENGTHENED CONSTRUCTION

Function:

Surface gantry consisting of two Y axes and one X axis. The unit is driven by a rotating belt, which remains connected through various deflection points. Due to the rectangular profile high torques and loads can be taken up. In addition, a very high stability and low deflection are ensured for long axis systems. The belt tension can be easily readjusted via a tensioning device within the carriage. The movement is realised by two motors. The coordinate lies diagonal to the deflection points of the X axis. Advantage: Only small masses are moved and thus it is possible to achieve high accelerations.

Fitting position: As required. Max. length and width 3.000 mm.

Carriage mounting: By T-slots.

Unit mounting: By T-slots or tapped holes in the bearing block, mounting sets.

Belt type: HTD with steel reinforcement, no backlash when changing direction, repeatability: \pm 0,1 mm.

					_				
Foi	rces/Torque		static	dynamic					
	F _x (N)		894	800					
	F _y (N)		4100	3100					
	$F_z(N)$		2160	1600					
	M _x (Nm)		88	65					
	M _y (Nm)			190	140				
	M_z (Nm)			230	170				
All forces and toro	ques relate	to the follo	wing:						
existing values	Fy	. Fz	. Mx	Му	- Mz - ≤1				
table values	Fy _{dyn}	Fz _{dyn}	+ $\frac{Mx}{Mx_{dyn}}$ ·	My _{dyn}	Mz _{dyn} ≤I				
No-load torqe									
	Nm			1,2					
Speed									
	(m/s) max			5					
Tensile force									
ре	ermanent (N)		900					
	0,2 s (N)			1	000				
Geometrical mom	ents of ine	rtia of alum	ninium profi	le - Y-Axis					
	l _x mm⁴			6,79x10⁵					
	l _v mm⁴			6,97×10⁵					
E-N	∕lodul N/mm		70000						
Geometrical mom	ents of ine	rtia of alum	ninium profi	le - X-Axis					
	l _x mm⁴		2,8 x 10 ⁶						
	l _v mm⁴			9,6 x 10⁵					
ГМ	odulus N/mi		70000						

Size

For life-time calculation of rollers use our homepage.

60 S

Driving torque:

$$M_a = \frac{F * P * S_i}{2000 * \pi} + M_n$$

$$P_a = \frac{M_a * n}{9550}$$

= force (N) = pulley action perimeter (mm) = safety factor 1,2 ... 2 = no-load torque (Nm)n = rpm pulley (min-1) Ma = driving torque (Nm) (KVV) = motor power

*For slide nuts refer to chapter 2.2 page 2

	Size	Ba len	sic gth	А	В	c	D - 0,05	E	F	ı	J	к	N for	NN for	OO for	Р	Qx	Qy	т	v	х	Υ	Basic weight	Weight per
ı		Lx	Ly				0,03																	100 mm
ſ	ELZU 60 S W	450	400	170	108	80	47	30	42	33	82	94	M 8	M5	M 8	59	194	280	M6	127	27	26	17,9 kg	0,9 kg

O Choice of guide body profile:

- (0) Standard (2) corrosion-protected guide rods and screws
- (4) expanded corrosion-protected version (depending on the availability of components)

O Choice of carriages:

Size		Versi	ion 1		Version 2					
	Qx	Lx	Qy	Ly	Qx	Lx	Qy	Ly		
60 S	214	470	280	400	214	470	300	420		

0 Drive version:

The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings.

Belt table:

Code No.		Size	Belt	mm/rev.	Number of teeth		
0	4	60 S	5M25	130	26		

X-Axis

Shaft dimensions / Coupling claw:

Size	Shaft ø h6 x length	Key	Coupling		
60 S	14 x 35	5x5x28	14		

ELZU 60S W 7 0 0 0 0 4 1 01500

Basic length + stroke = total length

Y-Axes Basic length + stroke = total length

 ELZU 60S W
 8
 0
 0
 0
 0
 4
 1

For combination kits and connecting elements refer to chapter 2.2

Sample ordering code:

ELZU 60S W, standard body profile, standard carriage, coupling claw on one side, stroke X = 1080 / Y = 298 mm

00700

