Linear system DLZS 120 P, 160 P, 200 P

BELT DRIVE

 \bigcirc INDEPENDENT INSTALLATION POSITION

- \bigcap omega system
- 🖉 LIFTING SYSTEM
- COVER PROFILE

Function:

The guide body consists of a rectangular aluminium profile two integrated roller guides. The carriage is moved by a belt drive. The novelty is that the timing belt is diverted into a drive block positioned centrically. This results in an extraordinary compactness with regard to the overall length of the system. The driving toothed pulley is provided with a coupling claw as a standard. The belt tension can be easily readjusted via a tensioning device within the bearing block. The openings in the guide body are closed by an aluminium profile, leaving only small slits open on the sides. The cover profile can be adjusted according to the mounting position.

The advantages compared to the DLZS positioning system are: The number of components prone to wear such as cover bands and sliding blocks is reduced and the fact that there is no friction makes it possible to use smaller motors. In addition, the cover profile, which is fixed with only a few screws, improves the serviceability and maintainability.

Fitting position:	As required. Max. length DLZS 120P / 1600mm, DLZS 160P / 1800mm, DLZS 200P / 2000mm
Carriage mounting:	By tapped holes.
Unit mounting:	By T-slots and mounting sets. The linear axis can be combined with any T-slot profile.
Belt type:	HTD with steel reinforcement, no backlash when changing direction, repeatability \pm 0,1 mm.
Carriage support:	In the standard version, the carriage runs on 8 rollers which can be serviced at a central servicing position. For longer
	carriages the number of rollers can be increased.

Forces and torques	Size	1	20	1	60	2	00					
Forces and torques	Forces/Torques	static	dynamic	static	dynamic.	static	dynamic.					
Fz≜	F _x (N)	894	800	1900	1800	4000	3800					
Mz	F _y (N)	1100	900	3000	2000	4400	3100					
	F _z (N)	1250	1000	3500	2800	4900	4400					
Mx Fx	M _x (Nm)	150	125	400	320	600	510					
	M _v (Nm)	140	120	360	300	560	480					
My	M _z (Nm)	100	90	180	150	310	275					
	All forces and torques related to the following:											
	existing values Fy Fz Mx My Mz											
	table values Fy_{dyn} + Fz_{dyn} + Mx_{dyn} + Mz_{dyn} + Mz_{dyn} ≤1											
	No-load torque											
	Nm	1	,2	1	,5	1,8						
	Speed											
	(m/s) max		4		6	8						
	Geometrical moments of inertia of alum	inium profile										
	l _v mm⁴	6,6	x 10 ⁵	22,2	x 10 ⁵	57,2 x 10 ⁵						
	l _v mm⁴	38,6	x 10 ⁵	122	x 10 ⁵	310 x 10 ⁵						
	Elastic modulus N/mm ²	70	.000	70.	.000	70.000						

For life-time calculation of rollers use our homepage.

Driving torque: Deflection: F*P*S F*13 F +M = force (N) $\frac{1}{2000 * \pi}$ E*I*192 Ρ = pulley action perimeter (mm) Si f = deflection= safety factor 1,2 ... 2 (mm) M *n = no-load torque (Nm) F = load(N)M 95.50 = rpm pulley (min⁻¹) L = free length(mm) n M_a = driving torque (Nm) E = elastic modulus 70000 (N/mm^2) Pa (KW) I = second moment of area = motor power (mm⁴)

Linear system DLZS 120 P, 160 P, 200 P

Q P1 Φ w ĝ, RR

W = servicing position

DL 120 M1 = M6 x 8

only 8 threaded holes in the carriage

DL 160 M1 = M8 x 12 **DL 200** M1 = M10 x 12

Increasing the carriage length will increase the basic length by the same amount.

Size	А	в	с	D	Е Ø	F	G	н	I	к	M for	N for	ο	P1	P2	R	RR	s	т	U	x	Y	z	Basic weight	Weight per 100 mm
DLZS 120 P	120	78	80	169	47	42	80,5	10	60	79	M5	M6	85,5	6	32	11,5	47,5	106	40	120	130	30	M6	5,5 kg	0,77 kg
DLZS 160 P	160	90	100	219	68	60	108,5	11	80	106	M6	M8	107	8,2	51,2	15	61,5	144	80	160	180	38	M8	14,1 kg	1,5 kg
DLZS 200 P	200	140	130	281	90	80	132,5	15	100	129	M8	M10	146	10	37,5	17	57,5	180	100	200	270	60	M10	30,2 kg	2,1 kg

Choice of guide body profile: Stainless versions upon request. 0

Sizo	Vers	ion 0	Version 1					
5120	Q	L	Q	L				
120	152	192	192	232				
160	196	282	246	332				
200	256	345	320	409				
	Vers	ion 2	Version 3					
120	232	272						
160	296	382	396	482				
200	396	485	521	610				

0

3 5 0 1 4

5 is as 0, but with coupling claws on both sides. The standard version is supplied without shaft. A shaft can be retrofitted by inserting it into the pulley bore and securing it with 2 locking rings or tension sets (size 200).

Belt table:

Code No.		Size	Belt	mm/rev.	Number of teeth
0	4	120	5M 25	130	26
0	7	160	8M 30	192	24
0	9	200	8M 50	256	32

DLZS 120 P 1 0 0 0 4 1500 1 2

3 4 5 б 7 Basic length + stroke = total length

Shaft dimensions / Coupling claw:

Size	Shaft ø h6 x length	Key	Coupling
120	14 x 35	5 x 5 x 28	14
160	18 x 45	6 x 6 x 40	19
200	22 x 45	6 x 6 x 40	24

Pos. Sample ordering code:

1

V = Q + 100 mm

Dimensions (mm)