Linear system MLZ 60 (S) W

Function:

The guide body consists of an aluminium square profile with lateral, parallel, form-fit, internal hardened steel rods. The guide carriage, which is driven along the shafts by a timing belt, moves on the guide body with internal linear ball bearings that are adjustable free of play. The advantage of this system: The timing belt is guided within the profile, so that the system is independent of the mounting position. Due to the rectangular profile high torques and loads can be taken up. In addition, a very high stability and low deflection are ensured for long axis systems. The belt tension can be easily readjusted via a tensioning device within the carriage. This device also helps to adjust the symmetry of the carriages in applications where two parallel linear units are used.

Fitting position: Carriage mounting: Unit mounting: Belt type: As required, max. length 6.000 mm without joints.

By T-slots.

By T-slots or tapped holes in the bearing block, mounting sets.

HTD with steel reinforcement, no backlash when changing direction, repeatability: \pm 0,1 mm.

Forces and torques

Size	6	50	60 S					
Forces/Torques	static	dynamic	static	dynamic				
F _x (N)	894	800	894	800				
F _v (N)	3000	2000	4100	3100				
F _z (N)	1700	1100	2160	1600				
M _x (Nm)	67	43	88 65					
M _v (Nm)	90	70	190	140				
M _z (Nm)	120	100	230 170					
All forces and torques relate to th	e following:							
existing values Fy	Fz Mx	My N	1z -1					
table values Fy _{dyn} F	z _{dyn} + Mx _{dyn} +	My _{dyn} Mz	≤ I					
No-load torque								
Nm	0),6	0,7					
Speed								
(m/s) max		5	7					
Tensile force								
permanent (N)	9	00	900					
0,2 s (N)	10	000	1000					
Geometrical moments of inertia of	of aluminium profile							
l _x mm⁴	2,8	x 10 ⁶	2,8 x 10 ⁶					
l _v mm⁴	9,6	x 10 ⁵	9,6 x 10⁵					
E-Modulus N/mm ²	70	000	70000					

For life-time calculation of rollers use our homepage.

Positioning slysten ouls to (S) W

93

Increasing the carriage length will increase the basic length by the same amount.

Size	Basic length L	A	в	с	D - 0,05	E	F	G	н	ſ	к	м	N for	00 for	Р	Q	т	U	U1	w	x	Y	z	Basic weight	Weight per 100 mm
MLZ 60 W	290	144	96	80	47	30	42	60	139	79	48	63	M5	M8	59	168	M6	29,5	M8	60	27	26	55	5,2 kg	0,8 kg
MLZ 60S W	315	170	108	80	47	30	42	60	143	83	52	63	M5	M8	59	194	M6	29,5	M8	60	27	26	55	6,2 kg	0,8 kg

Sample ordering code:

MLZ 60 W, standard body profile, standard carriage, coupling claw on one side, 1210 mm stroke

Our policy is one of continued research and development. We therefore reserve the right to amend,without notice, the specifications given in this document. © 2023 Bahr Modultechnik GmbH